Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Jänner 2007

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

> Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz – Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

24. März 2007 Ausstellungsdatum:

Für die Abteilung Waldschutz - Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

\Rightarrow	Tonbanddienst der Post:	0512/1552
⇒	Teletext des ORF	Seite 782, 783
\Rightarrow	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
urzübersicht über die Einhaltung von Grenzwerten urzbericht ationsvergleich	6
urzübersicht über die Einhaltung von Grenzwerten urzbericht ationsvergleich Ionatsauswertung der Stationen öfen – Lärchbichl	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – Imsterau	15
Karwendel West	18
Innsbruck – Andechsstrasse (Reichenau)	20
Innsbruck – Fallmerayerstrasse (Zentrum)	24
Innsbruck – Sadrach	28
Nordkette	30
Mutters – Gärberbach A13	33
Hall in Tirol – Sportplatz	36
Vomp – Raststätte A12	39
Vomp – An der Leiten	42
Zillertaler Alpen	45
Brixlegg – Innweg	47
Kramsach – Angerberg	50
Kundl – A12	53
Wörgl – Stelzhamerstrasse	56
Kufstein – Praxmarerstrasse	59
Kufstein – Festung	62
Lienz – Amlacherkreuzung	64
Lienz – Sportzentrum	68
Beurteilungsunterlagen Grenzwerte aus Gesetzen, Verordnungen und Richtlinien	70
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	72

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäss IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäss IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäss IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid
NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8_MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

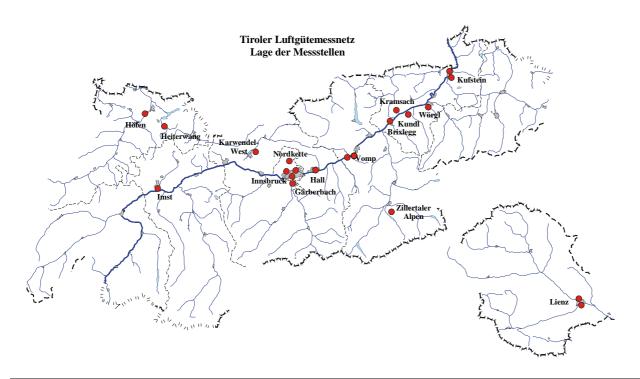
Gl.JMW Gleitender Jahresmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97)

n.a. nicht ausgewertet

	BEST	ГÜСКU	NGSLISTI	E			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО
Höfen – Lärchbichl	880 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	995 m	-	•/-	•	•	-	-
Imst – Imsterau	726 m	-	•/-	•	•	-	-
Karwendel – West	1730 m	-	-/-	-	-	•	-
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstrasse	580 m	•	•/•	•	•	-	•
Innsbruck – Sadrach	670 m	-	-/-	-	-	•	-
Nordkette	1950 m	-	-/-	•	•	•	-
Mutters – Gärberbach A13	680 m	-	•/-	•	•	-	-
Hall in Tirol – Sportplatz	560 m	-	•/-	•	•	-	-
Vomp – Raststätte A12	550 m	-	•/-	•	•	-	-
Vomp – An der Leiten	520 m	-	•/-	•	•	-	-
Zillertaler Alpen	1930 m	-	-/-	-	-	•	-
Brixlegg – Innweg	520 m	•	•/-	-	-	-	-
Kramsach – Angerberg	600 m	-	-/-	•	•	•	-
Kundl – A12	510 m	-	-/-	•	•	-	-
Wörgl – Stelzhamerstrasse	510 m	-	•/-	•	•	-	-
Kufstein – Praxmarerstrasse	500 m	•	•/-	•	•	-	-
Kufstein – Festung	560 m	-	-/-	-	-	•	-
Lienz – Amlacherkreuzung	670 m	•	•/-	•	•	-	•
Lienz – Sportzentrum	670 m	-	-/-	-	-	•	-
1) An den Stationen Imst/Imsterau Innsh	mals/Andoohsstros	aa Innahmad	/Follmorovorstross	a Hall/Cnor	tnletz Vomn/D	ostatätta A 12	1

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Warn-, Grenz- und Zielwerten Januar 2007

HÖFEN	Bezeichnung der Messstelle	SO2	PM10 2)	NO	NO2 1)	03	CO
HEITERWANG						P	
Ort / B 179	Lärchbichl						
IMST			IP		Ö		
Imsterau	Ort / B179						
KARWENDEL West We	1		IP				
West	Imsterau				M	_	
INNSBRUCK	1					Р	
Andechstrasse	West				"		
INNSBRUCK	1		IP				
Fallmerayerstrasse							
INNSBRUCK Sadrach P			IP		1000		
Sadrach NORDKETTE P P					M	_	
NORDKETTE	1					Р	
MUTTERS Gärberbach A13 Görberbach A13 Görberbach A13 Görberbach A13 Görberbach A13 Görberbach A13 Görberbach A12 Görberbach A13 Görberbach	Sadrach						
Gärberbach A13	NORDKETTE					Р	
Gärberbach A13	MUTTERS				Ö		
HALL IN TIROL Sportplatz M M	1						
Sportplatz	HALL IN TIROL		IP		IZ Ö		
VOM P	1				1000		
VOM P	VOM P		IP		IZ Ö		
VOM P	Raststätte A12				M		
ZILLERTALER ALPEN BRIXLEGG Innweg KRAMSACH Angerberg KUNDL A12 WÖRGL Stelzhamerstrasse KUFSTEIN Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung LIENZ P M M M M M M M M M M M M			IP		Ö		
ZILLERTALER ALPEN BRIXLEGG Innweg KRAMSACH Angerberg KUNDL A12 WÖRGL Stelzhamerstrasse KUFSTEIN Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung LIENZ P M M M M M M M M M M M M	An der Leiten						
BRIXLEGG						P	
BRIXLEGG	ALPEN					M	
KRAM SACH			IP				
KRAM SACH	Innweg						
KUNDL					Ö	P	
A12	Angerberg						
Stelzhamerstrasse	KUNDL				IZ Ö		
Stelzhamerstrasse	A12						
KUFSTEIN Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung LIENZ P	WÖRGL		IP		Ö		
Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung LIENZ P	Stelzhamerstrasse						
KUFSTEIN Festung LIENZ Amlacherkreuzung LIENZ P	KUFSTEIN		IP		Ö		
KUFSTEIN Festung LIENZ Amlacherkreuzung LIENZ P							
LIENZ Amlacherkreuzung LIENZ P						P	
LIENZ Amlacherkreuzung LIENZ P	Festung						
A mlacherkreuzung LIENZ P			IP		Ö		
LIENZ	Amlacherkreuzung						
Sportzentrum						P	
	Sp ortzentrum						

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoffdioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Grenzwert
12	zum Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
	Überschreitung des im IG-L genannten Tages ziel wertes von 50μg/m³ für PM10. Der PM10-Tages grenz wert gem.
IP	Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen
	erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
IG	Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der
	Informationsschwelle gemäß Ozongesetz.
!	Überschreitung von Warnwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss
	Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz,
	Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Jänner 2007

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/1997 idgF.) und gemäß Ozongesetz (BGBl. 210/1992 idgF.) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/98, novelliert mit BGBl. II 263/2004) ein Luftgütemessnetz mit insgesamt 21 Messstationen. Mit Jahresbeginn musste die Messstelle HALL IN TIROL/Münzergasse aufgelassen werden. Als immissionsfachlich gleichwertiger Ersatz wurde die Messstelle HALL IN TIROL/Sportplatz ca. 350 m östlich in einer ähnlichen Entfernung zur Autobahn errichtet.

Dieser Bericht enthält für die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM 10 und PM 2,5) Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Das viel zu milde Winterwetter des Dezembers setzte sich auch im Jänner fort. Die Monatsmitteltemperaturen lagen satte 3,5 bis 5 Grad über dem Schnitt, die größten Abweichungen gab es dabei im Unterland, im Außerfern und in Osttirol. Gebietsweise war der Jänner 2007 somit der wärmste seit Beginn von Temperaturaufzeichnungen, in manchen Regionen der zweitwärmste nach dem Jänner 1988 (etwa in Innsbruck, wo 5 Zehntelgrad fehlten). In Innsbruck gab es 22 Frosttage, um 5 weniger als normal, in Landeck und in Hanglage in Steinach waren es sogar um 12 weniger. Magere 2 Eistage (Tage mit ganztägigem Frost) gab es in der Landeshauptstadt, um 5 zu wenig. Die höchste gemessene Temperatur war 16,6 Grad am 19.1. in Innsbruck.

Es gab verbreitet mehr Niederschlagstage als normal, die Mengen entsprachen in vielen Regionen aber dem langjährigen Schnitt. Im Unterinntal blieb es um bis zu 40 % zu trocken. Feuchter als gewöhnlich war es in Osttirol, in Lienz fiel beispielsweise sogar mehr als das Doppelte der Durchschnittsmengen. Osttirol war auch die einzige Region, wo die Neuschneemengen gebietsweise Werte um einen Meter erreichten. In Nordtirol war der Jänner hingegen schneearm. Es gab nur zwei Episoden, die für Schnee sorgten, einmal am 2./3.1. und dann in der Hahnenkammwoche (letzte Jännerdekade). Allerdings kann die Schneehöhe in Innsbruck nicht über 8 cm hinaus und insgesamt lag hier nur an 11 Tagen Schnee (23 Tage sind es im Schnitt). Selbst in Kitzbühel und in St. Anton gab es keine durchgehende Schneedecke, immerhin erreichten die maximalen Schneehöhen hier vorübergehend einmal 30 bzw. 35 cm.

In Innsbruck wurden an 6 Tagen Windgeschwindigkeiten über 60 km/h registriert. Dies einerseits aufgrund von Föhn, andererseits aufgrund des Orkantiefs Kyrill, das am 18./19.1. über Deutschland zog. Auch in Tirol gab es im Norden Sturmschäden, der Orkan machte sich aber vor allem durch die Kombination von außergewöhnlich hohen Temperaturen, Wind und Regen als großer Schneefresser bemerkbar.

Die Sonne erfüllte ihr Soll ziemlich genau.

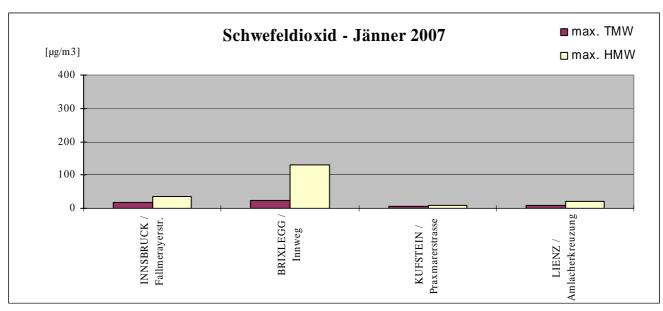
Luftschadstoffübersicht

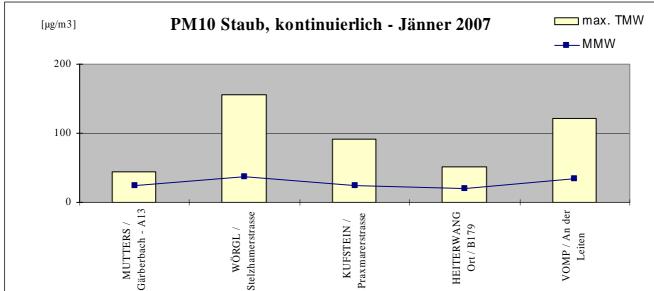
Der anhaltend milde Winter mit einerseits verhältnismäßig günstigen Ausbreitungsbedingungen und mit andererseits geringerem Heizbedarf sowie einem geringerem Salz- und Splitstreuaufwand wie im Vorjahr hatte auch verhältnismäßig geringe Belastungen bei den Problemschadstoffen PM10 und NO2 zur Folge.

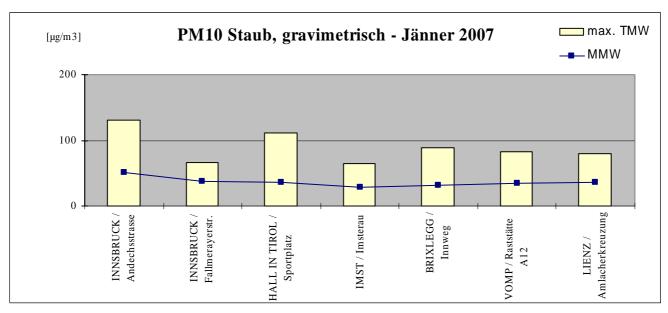
PM10-Überschreitungen in zweistelliger Höhe wurden nur an der Messstelle INNSBRUCK/Andechsstraße mit 17 Überschreitungstagen des Tagesgrenzwertes von $50\,\mu\text{g/m}^3$ laut Immissionsschutzgesetz-Luft gezählt. An zweiter Stelle liegt LIENZ/Amlacherkreuzung mit 5 Grenzwertüberschreitungen, die restlichen Messstellen liegen darunter. Ohne Grenzwertüberschreitung bleibt die Messstelle MUTTERS/Gärberbach A13.

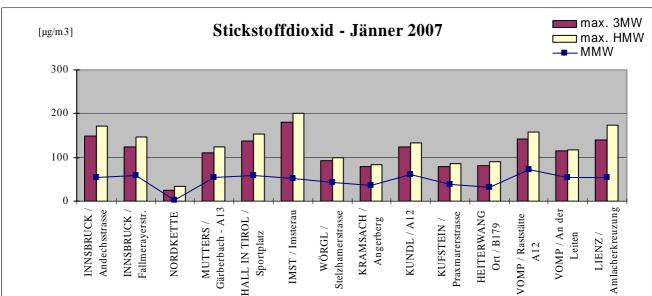
Die Grenzwerte für Stickstoffmonoxid laut VDI-Richtlinie wurden bei allen Messstellen deutlich eingehalten.

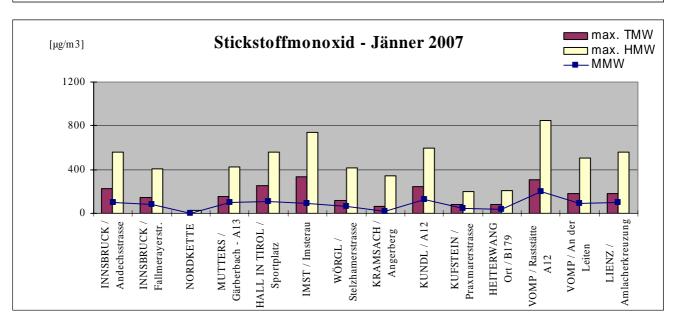
Der Kurzzeitgrenzwert für **Stickstoffdioxid** zum <u>Schutz des Menschen</u> laut Immissionsschutzgesetz-Luft wurde an der Messstelle IMST/Imsterau mit 200 μ g/m³ zwar erreicht, aber nicht überschritten. Der Zielwert mit 80 μ g/m³ als Tagesmittelwert wurde lediglich an den Messstellen VOMP/Raststätte A12 mit 10 Tagen und HALL IN TIROL/Sportplatz mit 5 Tagen häufiger überschritten. Die Messstellen IMST/Imsterau, INNSBRUCK/Andechsstraße sowie INNSBRUCK/Fallmerayerstraße verbuchten jeweils 2 Überschreitungen. An der Messstelle KUNDL/A12 wurde nur an einem Tag ein Tagesmittelwert über 80 μ g/m³ gemessen, was gleichzeitig die erste Überschreitung des Zielwertes seit bestehen der Messstelle Anfang November 2006 darstellt.

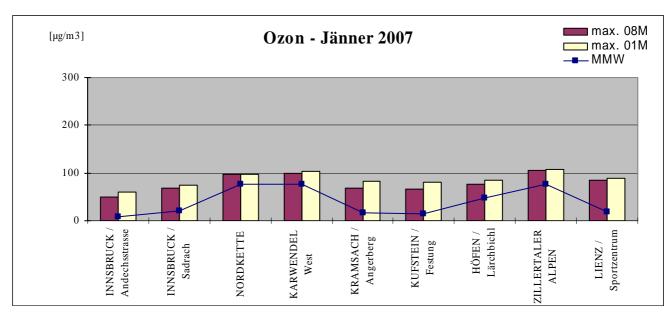

Die Luftqualitätskriterien für NO2 zum <u>Schutz der Ökosysteme</u> laut ÖAW (Österreichische Akademie der Wissenschaften) wurden an der Messstelle KRAMSACH/Angerberg nicht eingehalten; an 11 Tagen wurde die Immissionsgrenzkonzentration von 40 μg/m³ überschritten.

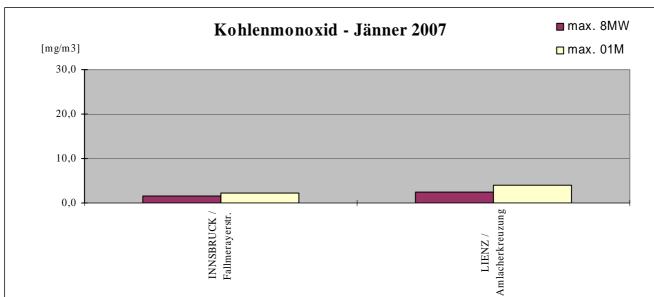

Bei den **Schwefeldioxidmessungen** wurden an allen 4 Messstellen geringe Belastungen mit Monatsmittelwerten zwischen 3 und 9 μ g/m³ festgestellt. Die höchsten Kurzzeitbelastungen wurden an der Messstelle BRIXLEGG/Innweg mit einem maximalen Tagesmittel von 25 μ g/m³ und einem maximalen Halbstundenmittelwert von 131 μ g/m³ gemessen. Die Grenzwerte gem. IG-Luft sind damit für Schwefeldioxid überall deutlich eingehalten.


Die Ozonmessungen zeigen lediglich an einer der insgesamt 9 Messstellen 2 Überschreitungen der wirkungsbezogenen Immissionsgrenzkonzentration zum Schutz des Menschen gemäß ÖAW. Die Auswertung nach den wirkungsbezogenen Kriterien zum Schutz der Vegetation ergibt - außer in INNSBRUCK/Andechstrasse - bei allen Messstellen jeweils eine Überschreitung.

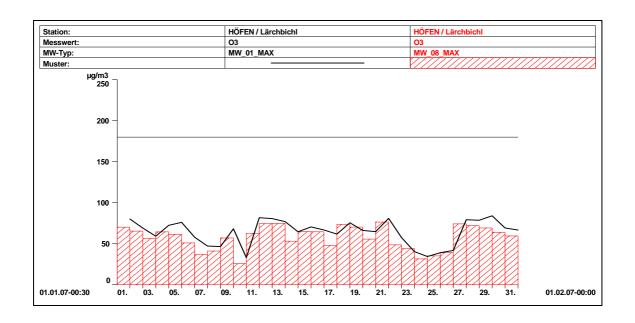

Bei der Schadstoffkomponente **Kohlenmonoxid** wurden die festgesetzten Grenzwerte an beiden Messstellen bei weitem nicht erreicht. Der höchste Achtstundenmittelwert wurde an der Messstelle LIENZ/Amlacherkreuzung mit 2,4mg/m³ gemessen. Dieser Wert liegt unterhalb der 25% Marke des Grenzwertes von 10 mg/m³.


Stationsvergleich





Zeitraum: JÄNNER 2007 Messstelle: HÖFEN / Lärchbichl


	SC)2	PM10	PM10	NO		NO2			_	О3				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									70	70	80	80	80			
02.									65	66	69	70	74			
03.									56	56	59	59	60			
04.									64	64	72	72	75			
05.									61	61	76	80	80			
06.									51	51	58	58	59			
So 07.									37	37	47	51	52			
08.									41	41	46	46	47			
09.									57	57	68	68	69			
10.									26	26	33	34	36			
11.									63	64	82	85	86			
12.									74	74	81	81	81			
13.									75	74	77	77	78			
So 14.									53	53	65	66	66			
15.									65	65	71	71	71			
16.									65	65	67	67	67			
17.									48	48	62	62	65			
18.									73	73	76	76	76			
19.									70	71	66	66	66			
20.									56	56	65	68	69			
So 21.									76	77	81	81	81			
22.									49	49	57	57	58			
23.									44	44	40	40	42			
24.									31	32	34	35	35			
25.									35	35	39	39	39			
26.									39	39	42	42	63			
27.									74	74	79	79	80			
So 28.									72	72	79	79	79			
29.									69	69	84	84	84			
30.									64	64	69	69	70			
31.									59	59	67	68	69			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						86	
Max.01-M						84	
Max.3-MW							
Max.08-M						76	
Max.8-MW						77	
Max.TMW						70	
97,5% Perz.							
MMW			-			47	-
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					16	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

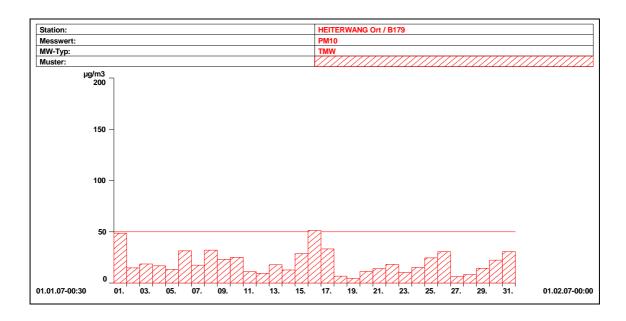
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

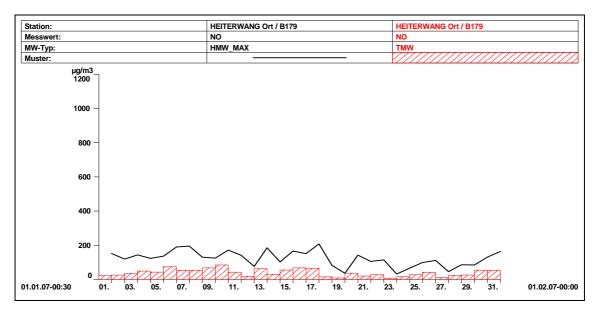
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

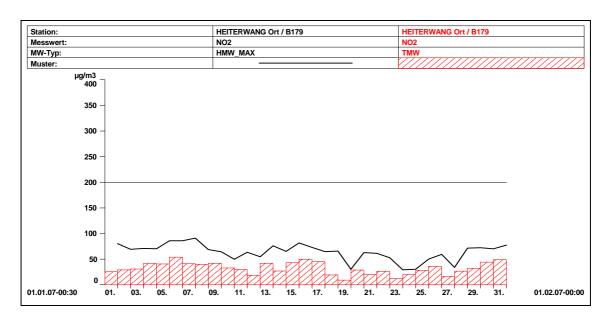
Messstelle: HEITERWANG Ort / B179

	SO)2	PM10	PM10	NO		NO2			_	03				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			49		151	25	73	80								
02.			15		119	29	69	69								
03.			19		143	31	69	71								
04.			17		123	41	67	70								
05.			13		136	41	81	86								
06.			31		190	54	79	86								
So 07.			17		195	41	87	91								
08.			32		130	40	59	69								
09.			23		125	42	63	64								
10.			25		172	33	47	50								
11.			11		141	30	56	63								
12.			9		76	18	51	55								
13.			18		185	42	70	76								
So 14.			13		102	27	58	65								
15.			29		166	43	74	82								
16.			51		151	50	63	73								
17.			33		208	45	61	65								
18.			7		83	19	59	66								
19.			4		36	9	28	30								
20.			11		142	29	57	63								
So 21.			14		106	20	58	61								
22.			18		114	26	51	53								
23.			10		31	12	23	29								
24.			15		66	20	28	30								
25.			25		99	28	48	50								
26.			31		111	36	54	59								
27.			6		46	17	33	34								
So 28.			8		86	27	68	72								
29.			14		84	32	70	72								
30.			22		131	44	63	70								
31.			31		164	49	72	78								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				208	91		
Max.01-M					87		
Max.3-MW					82		
Max.08-M							
Max.8-MW							
Max.TMW		51		84	54		
97,5% Perz.							
MMW		20		39	32		
Gl.JMW					27		


Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				11		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

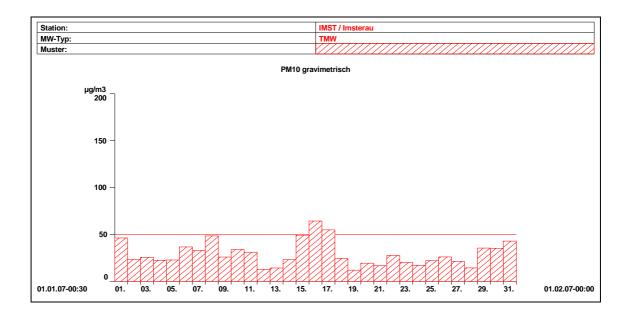
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

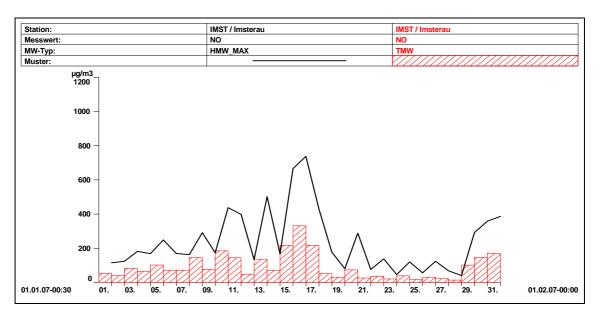
Zeitraum: JÄNNER 2007 Messstelle: IMST / Imsterau

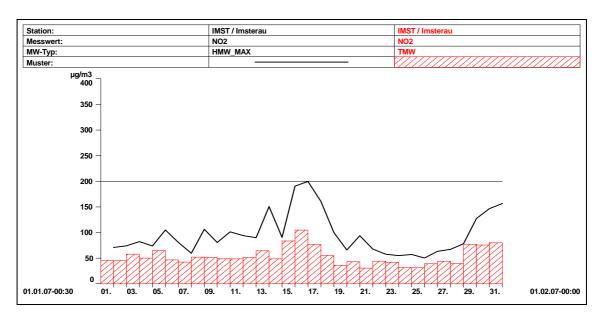
	SO)2	PM10	PM10	NO		NO2		O3				СО	_		
	ша	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³		_		μg/m³				mg/m³	
	με	max	μς/ΙΙΙ	μβ/Ш	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				46	115	45	64	71								
02.				23	124	45	73	74								
03.				26	182	58	81	82								
04.				23	168	50	72	74								
05.				23	249	65	102	105								
06.				37	169	47	72	81								
So 07.				33	163	42	59	60								
08.				49	291	52	94	106								
09.				26	174	51	76	81								
10.				34	438	49	96	101								
11.				31	398	49	87	94								
12.				13	134	51	86	90								
13.				14	502	64	145	151								
So 14.				23	168	49	82	91								
15.				49	666	84	188	191								
16.				64	738	105	188	200								
17.				55	431	77	138	161								
18.				25	177	55	94	100								
19.				12	80	36	62	66								
20.				19	289	43	79	94								
So 21.	_			17	75	31	65	68								
22.				28	138	44	56	58								
23.				20	46	42	53	55								
24.				17	120	32	53	57								
25.				22	56	31	43	50								
26.				26	124	39	59	63								
27.				21	68	44	67	67								
So 28.				14	40	39	74	78								
29.				36	292	77	121	127								
30.				35	358	76	141	147								
31.				43	387	80	147	157								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				738	200		
Max.01-M					188		
Max.3-MW					181		
Max.08-M							
Max.8-MW							
Max.TMW			64	332	105		
97,5% Perz.							
MMW			29	91	53	, in the second	
Gl.JMW					38		

JÄNNER 2007 Zeitraum: Messstelle: IMST / Imsterau


Anzahl der Tage mit Grenzwertüberschreitungen

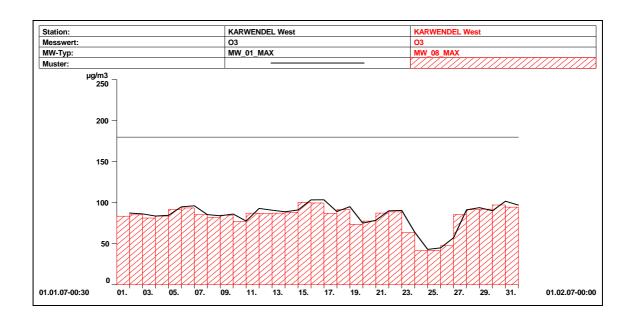

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO						
Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte				0								
IG-L: Grenzwerte menschliche Gesundheit		2		0								
IG-L: Zielwerte menschliche Gesundheit		2		2								
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.								
OZONGESETZ: Alarmschwelle												
OZONGESETZ: Informationsschwelle												
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen												
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				25								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				2								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


VDI-RL 2310: NO-Grenzwert

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West


	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg/	m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									86	86	87	87	88			
02.									85	86	86	89	90			
03.									81	82	84	84	84			
04.									84	84	85	85	86			
05.									92	92	95	95	96			
06.									94	93	96	96	97			
So 07.									85	85	86	86	86			
08.									82	82	84	84	85			
09.									85	85	86	86	87			
10.									77	77	78	78	78			
11.									87	87	93	93	94			
12.									87	87	91	91	92			
13.									87	87	89	89	89			
So 14.									88	88	91	91	92			
15.									100	100	103	103	104			
16.									100	100	104	106	106			
17.									87	87	89	90	90			
18.									92	92	95	95	97			
19.									74	74	75	75	76			
20.									78	78	79	79	79			
So 21.									87	87	90	90	91			
22.									89	89	91	91	91			
23.									63	63	64	67	69			
24.									41	44	43	43	43			
25.									42	42	45	45	48			
26.									48	49	57	57	82			
27.									86	85	91	91	91			
So 28.									92	92	94	94	95			
29.									92	92	90	90	91			
30.									97	97	102	103	104			
31.									95	95	97	97	97			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						106	
Max.01-M						104	
Max.3-MW							
Max.08-M						100	
Max.8-MW						100	
Max.TMW						96	
97,5% Perz.							
MMW		-		-		76	-
Gl.JMW							

Messstelle: KARWENDEL West

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO							
Gesetzliche Alarm-, Grenz- und Zielwerte													
IG-L: Warnwerte													
IG-L: Grenzwerte menschliche Gesundheit													
IG-L: Zielwerte menschliche Gesundheit													
IG-L: Zielwerte Ökosysteme, Vegetation													
OF ONO DEPTH AND A MARKET OF THE PROPERTY OF T	<u> </u>				0								
OZONGESETZ: Alarmschwelle													
OZONGESETZ: Informationsschwelle					0								
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0								
2. VO gegen forstschädliche Luftverunreinigungen													
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0								
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert													

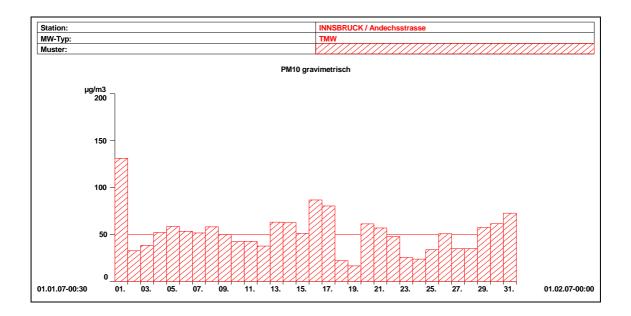
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

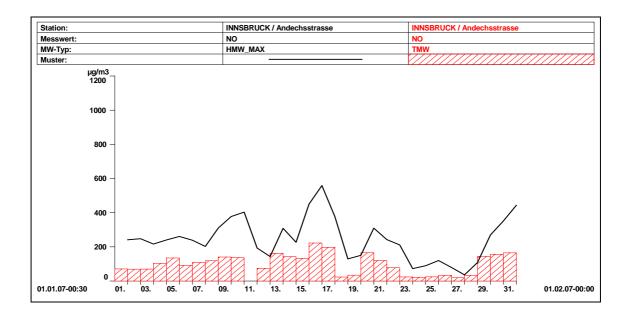
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

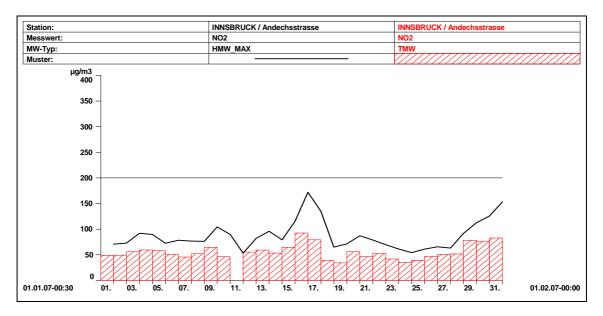
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

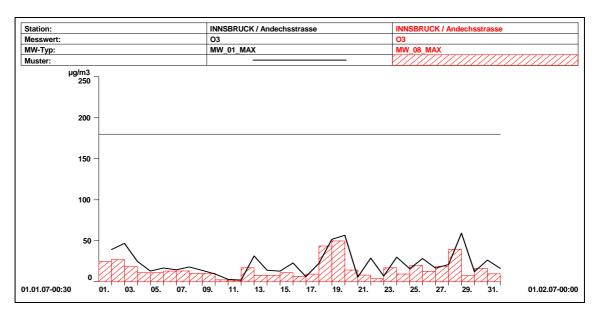
Messstelle: INNSBRUCK / Andechsstrasse

	SO)2	PM10	PM10	NO		NO2			03		со				
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				131	241	49	66	71	30	31	39	46	51			
02.				33	248	49	72	73	27	27	47	47	48			
03.				39	217	56	91	92	18	18	25	25	26			
04.				52	240	59	83	90	11	11	13	13	14			
05.				59	261	58	70	72	11	11	17	17	17			
06.				53	239	51	75	78	13	13	15	15	15			
So 07.				52	202	46	73	77	13	13	18	18	19			
08.				58	310	52	71	76	10	10	14	15	15			
09.				50	378	64	100	104	10	10	9	13	15			
10.				42	403	46	88	90	2	2	3	3	3			
11.				43	193		52	53	2	2	2	4	6			
12.				38	143	55	79	82	17	17	32	38	39			
13.				63	309	59	88	96	8	8	14	15	17			
So 14.				63	227	53	78	79	8	8	13	13	13			
15.				51	450	65	112	115	11	11	23	25	26			
16.				87	559	92	164	172	7	7	6	16	16			
17.				80	377	79	134	135	9	9	22	23	25			
18.				22	129	39	61	65	44	44	52	52	53			
19.				17	150	34	69	71	50	50	57	58	59			
20.				61	310	56	85	87	14	17	6	7	7			
So 21.				57	243	46	77	79	8	8	29	29	32			
22.				48	211	52	64	70	4	4	7	7	8			
23.				25	73	42	60	61	17	16	30	30	30			
24.				24	90	35	52	54	9	9	16	16	17			
25.				34	120	39	59	61	20	20	28	29	31			
26.				51	79	47	63	66	13	13	17	17	17			
27.				35	36	51	62	63	19	19	21	31	36			
So 28.				35	108	52	90	92	40	40	59	59	61			
29.				57	270	78	112	113	7	7	12	14	14			
30.				61	352	77	118	126	16	16	27	29	31			
31.				73	444	83	145	153	10	10	16	16	18			


	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			31	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				559	172	61	
Max.01-M					164	59	
Max.3-MW					149		
Max.08-M						50	
Max.8-MW						50	
Max.TMW			131	223	92	27	
97,5% Perz.	-		-				
MMW			51	101	55	9	·
Gl.JMW					40		


Messstelle: INNSBRUCK / Andechsstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO						
Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte				0								
IG-L: Grenzwerte menschliche Gesundheit		17		0								
IG-L: Zielwerte menschliche Gesundheit		17		2								
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.								
OZONGESETZ: Alarmschwelle					0							
OZONGESETZ: Informationsschwelle					0							
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0							
2. VO gegen forstschädliche Luftverunreinigungen												
Wirkungsbezogene Grenzwerte ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				26	0							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				2	0							
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									

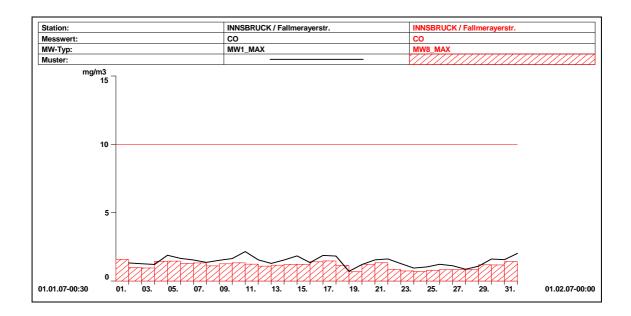

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

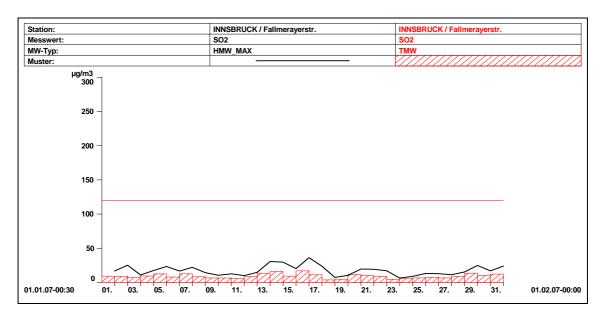
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

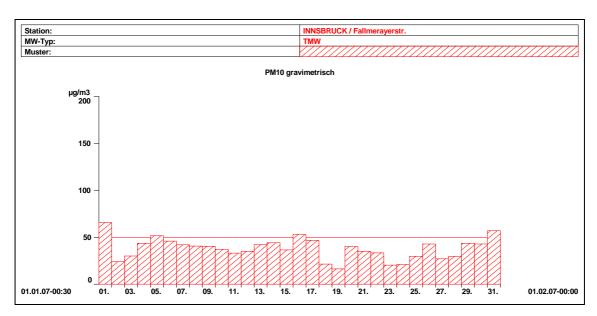
Messstelle: INNSBRUCK / Fallmerayerstrasse

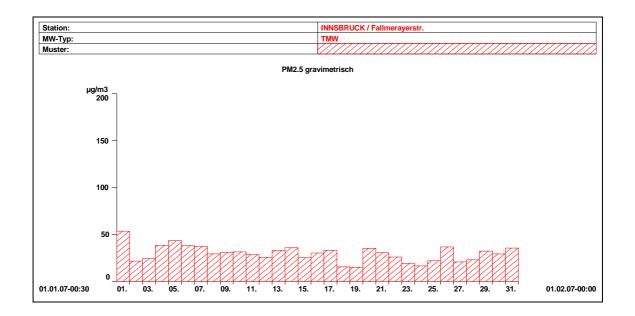
	S	02	PM10	PM25	NO		NO2	_		_	03		_		co	
			grav.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	9	17	66	54	130	50	74	76						1.6	1.3	1.4
02.	9	25	24	22	256	57	80	86						1.0	1.3	1.3
03.	7	11	30	24	207	65	92	100						1.0	1.2	1.3
04.	9	17	44	38	330	66	106	115						1.4	1.7	2.1
05.	12	23	52	43	274	66	79	86						1.5	1.7	1.7
06.	8	17	46	38	187	56	89	108						1.3	1.5	1.6
So 07.	13	22	42	37	163	47	75	75						1.3	1.4	1.5
08.	8	14	41	29	216	49	68	73						1.1	1.5	2.0
09.	7	10	40	31	204	61	88	88						1.3	1.6	1.8
10.	6	13	37	31	328	47	75	88						1.3	2.2	2.9
11.	6	10	33	29	229	41	69	70						1.2	1.6	1.6
12.	8	15	35	26	209	67	95	98						1.1	1.2	1.3
13.	14	31	42	33	297	64	90	94						1.2	1.5	1.7
So 14.	16	30	44	36	240	56	79	82						1.2	1.8	2.2
15.	9	20	37	25	344	69	119	125						1.2	1.3	1.5
16.	17	36	53	30	403		126	146						1.4	1.8	2.1
17.	11	24	47	33	309	73	121	132						1.5	1.8	2.2
18.	4	7	21	16	79	41	63	65						1.1	0.7	0.7
19.	5	10	16	15	158	41	83	84						0.7	1.2	1.2
20.	12	20	40	35	210	60	87	98						1.2	1.4	1.6
So 21.	10	19	35	31	197	50	76	85						1.3	1.5	1.7
22.	9	17	33	26	133	59	75	84						0.8	1.3	1.7
23.	4	6	20	19	115	52	76	80						0.7	0.9	1.1
24.	6	9	21	17	111	44	67	77						0.7	0.9	1.1
25.	7	13	30	22	211	50	77	86						0.8	1.2	1.4
26.	7	13	43	37	111	56	77	81						0.8	1.1	1.3
27.	7	11	27	21	46	53	66	73						0.8	0.8	1.0
So 28.	9	15	30	23	104	60	96	101						0.8	1.1	1.1
29.	13	25	44	32	305	82	126	140						1.2	1.6	1.7
30.	10	17	43	29	251	77	116	123						1.2	1.6	1.6
31.	12	24	57	36	270	84	121	128						1.4	2.0	2.3

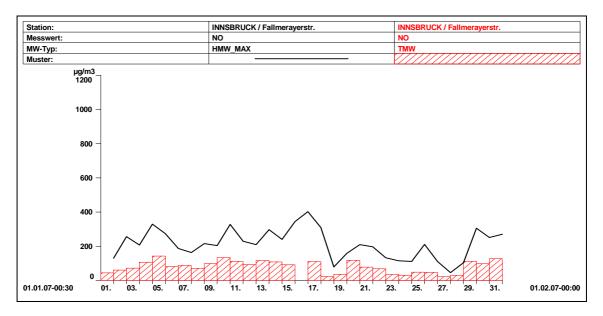
	SO2	PM10	PM25	NO	NO2	03	со
		grav.	grav.				
	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage	31	31	31	30	30		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	36			403	146		
Max.01-M					126		2.2
Max.3-MW	32				124		
Max.08-M							
Max.8-MW							1.6
Max.TMW	17	66	54	143	84		
97,5% Perz.	23						
MMW	9	38	30	82	59	-	0.8
Gl.JMW					49		

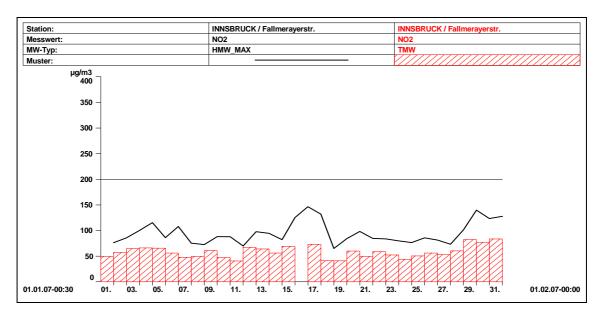

Messstelle: INNSBRUCK / Fallmerayerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO						
Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte	0			0								
IG-L: Grenzwerte menschliche Gesundheit	0	4		0		0						
IG-L: Zielwerte menschliche Gesundheit		4		2								
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.								
OZONGESETZ: Alarmschwelle												
OZONGESETZ: Informationsschwelle												
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen	0/0											
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				2								
ÖAW: SO2-Kriterium für Siedlungsgebiete	0											
VDI-RL 2310: NO-Grenzwert			0									

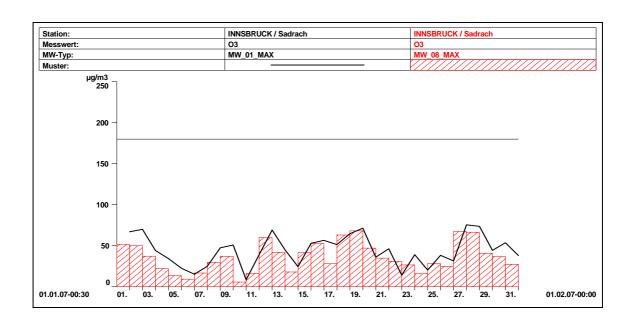

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Messstelle: INNSBRUCK / Sadrach


	SC)2	PM10	PM10	NO		NO2			_	О3		_		СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$		1		mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									52	52	67	67	72			
02.									50	49	70	71	71			
03.									37	37	44	45	48			
04.									22	22	34	34	35			
05.									13	14	23	23	23			
06.									9	9	15	15	16			
So 07.									17	17	25	26	27			
08.									30	30	48	48	49			
09.									37	38	51	57	58			
10.									6	7	8	8	14			
11.									16	16	39	39	41			
12.									60	60	69	69	71			
13.									42	42	45	47	49			
So 14.									18	19	24	29	30			
15.									42	42	53	53	58			
16.									53	53	57	59	62			
17.									28	28	51	51	52			
18.									63	63	65	65	66			
19.									68	69	71	72	72			
20.									47	49	36	39	40			
So 21.									35	35	46	48	56			
22.									31	32	14	14	18			
23.									27	27	39	41	43			
24.									16	16	20	20	22			
25.									28	28	38	40	40			
26.									25	25	31	31	32			
27.									67	67	75	76	76			
So 28.									66	66	74	79	84			
29.									41	42	44	44	46			
30.									37	37	54	54	54			
31.									27	27	38	40	43			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						84	
Max.01-M						75	
Max.3-MW							
Max.08-M						68	
Max.8-MW						69	
Max.TMW						54	
97,5% Perz.							
MMW						21	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OF ONO DEPTH AND A MARKET OF THE PROPERTY OF T	<u> </u>				0	
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					4	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

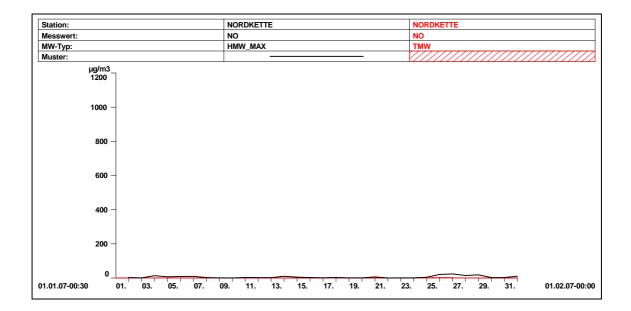
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

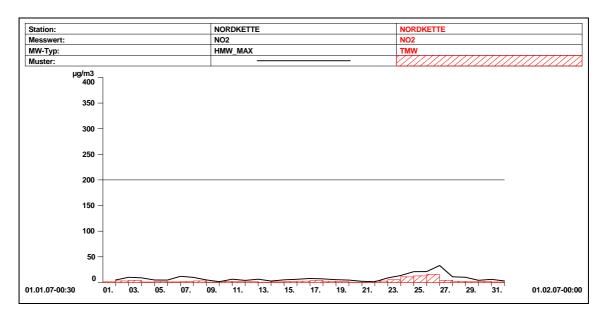
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

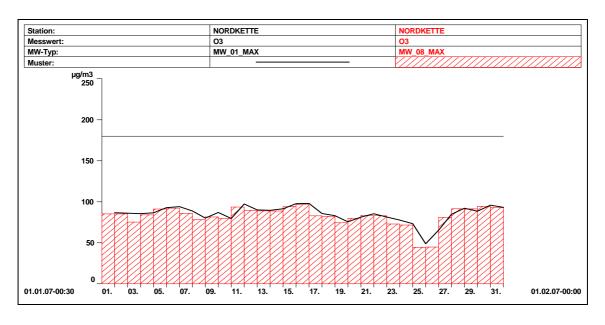
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: JÄNNER 2007 Messstelle: NORDKETTE

	SO)2	PM10	PM10	NO		NO2			_	03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					3	1	3	5	85	85	87	87	87			
02.					1	3	9	10	85	85	86	87	87			
03.					14	4	8	9	75	76	86	86	86			
04.					7	1	3	5	84	84	87	87	87			
05.					9	2	3	5	91	91	93	93	94			
06.					10	1	9	12	92	92	94	94	94			
So 07.					3	2	7	10	86	86	89	89	89			
08.					1	3	5	5	78	78	80	80	82			
09.					0	1	1	1	81	82	87	87	88			
10.					4	2	6	6	80	80	80	80	80			
11.					2	2	4	4	94	94	97	98	98			
12.					2	1	5	6	90	90	90	91	91			
13.					11	1	2	3	89	89	90	90	90			
So 14.					5	1	5	5	89	89	91	91	92			
15.					3	2	6	6	94	94	98	99	100			
16.					2	3	7	8	97	96	98	98	98			
17.					3	4	7	7	83	83	86	86	90			
18.					1	2	5	5	82	82	83	83	84			
19.					1	1	4	5	74	74	76	76	76			
20.					7	1	1	2	80	80	81	81	81			
So 21.					1	1	1	1	83	83	85	86	86			
22.					1	3	8	9	83	83	81	81	82			
23.					1	5	13	13	73	73	78	78	78			
24.					5	11	20	21	72	72	73	75	74			
25.					21	13	21	21	44	44	49	51	52			
26.					24	15	30	33	45	47	65	65	78			
27.					15	4	11	11	81	81	85	85	85			
So 28.					19	2	6	10	91	91	92	92	92			
29.					2	1	3	4	91	91	89	90	90			
30.					3	2	6	6	94	95	96	96	96			
31.					11	1	2	3	93	93	93	93	93			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				24	33	100	
Max.01-M					30	98	
Max.3-MW					25		
Max.08-M						97	
Max.8-MW						96	
Max.TMW				4	15	93	
97,5% Perz.							
MMW				1	3	76	
Gl.JMW					4		


JÄNNER 2007 Zeitraum: Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: MUTTERS / Gärberbach - A13

	SC)2	PM10 kont.	PM10 grav.	NO	_	NO2		03				со			
	μg/	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			36		59	37	65	68								
02.			16		231	59	92	110								
03.			28		246	70	104	106								
04.			29		285	65	94	103								
05.			30		309	61	82	82								
06.			26		136	49	76	80								
So 07.			23		123	47	69	74								
08.			19		379	46	79	86								
09.			31		419	52	97	107								
10.			26		319	38	60	62								
11.			23		313	43	70	70								
12.			17		195	54	92	97								
13.			21		179	52	81	87								
So 14.			19		123	42	75	76								
15.			29		399	53	89	100								
16.			36		424	69	107	125								
17.			35		415	64	110	115								
18.			11		88	49	108	123								
19.			12		155	42	83	89								
20.			22		200	55	91	97								
So 21.			17		99	44	77	79								
22.			31		372	57	78	83								
23.			21		222	57	77	79								
24.			23		189	49	69	71								
25.			29		294	52	70	72								
26.			44		240	62	91	107								
27.			19		186	56	91	95								
So 28.			13		100	51	82	85								
29.			28		280	73	111	117								
30.			28		280	67	113	125								
31.			30		273	70	111	124								

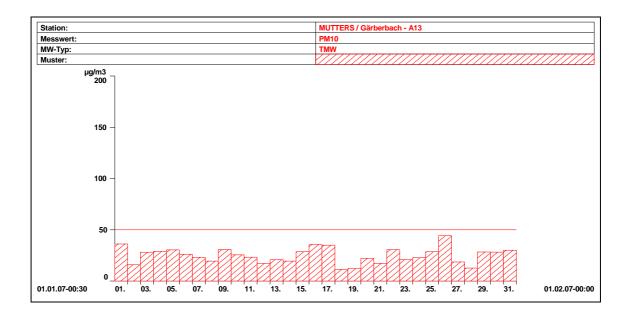
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				424	125		
Max.01-M					113		
Max.3-MW					110		
Max.08-M							
Max.8-MW							
Max.TMW		44		153	73		
97,5% Perz.							
MMW		25		96	54		
Gl.JMW					52		

0

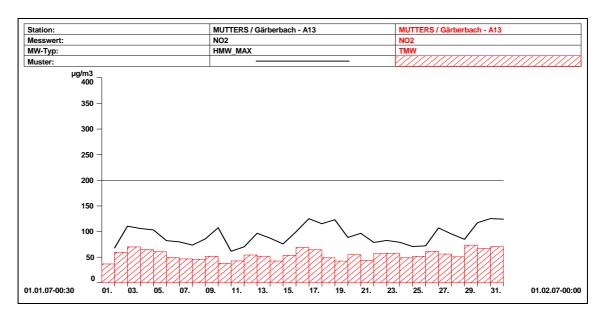
JÄNNER 2007 Zeitraum:

Messstelle: MUTTERS / Gärberbach - A13

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete			•			


VDI-RL 2310: NO-Grenzwert

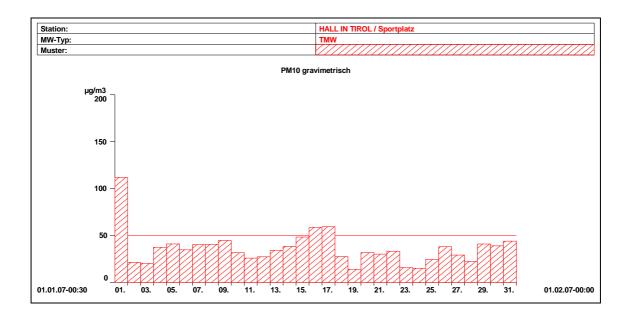

 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

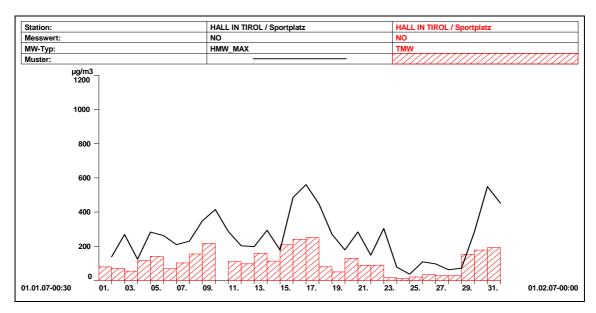
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

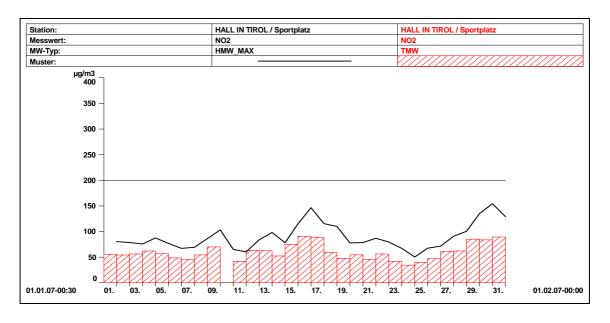
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad HALL\ IN\ TIROL\ /\ Sportplatz$

	SO)2	PM10	PM10	NO		NO2			О3				CO		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			163		138	56	79	80								
02.			23		269	54	77	79								
03.			27		124	56	75	76								
04.			38		283	62	83	87								
05.			49		262	57	73	77								
06.			36		209	49	64	67								
So 07.			40		230	46	67	69								
08.			40		348	54	86	86								
09.			49		415	70	103	103								
10.			48		287		62	65								
11.			28		203	42	60	60								
12.			32		198	63	78	84								
13.			36		294	62	91	98								
So 14.			42		178	52	75	78								
15.			50		485	75	111	115								
16.			68		561	91	143	147								
17.			69		448	89	111	115								
18.			37		270	59	101	110								
19.			15		179	48	74	78								
20.			36		284	55	72	78								
So 21.			32		148	46	80	87								
22.			35		304	56	72	80								
23.			17		78	41	64	67								
24.			12		37	34	47	50								
25.			25		109	40	60	68								
26.			44		96	47	70	72								
27.			30		62	62	89	91								
So 28.			23		72	62	100	100								
29.			43		286	85	130	135								
30.			44		549	84	145	154								
31.			53		453	89	124	129								


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		30	30		
Verfügbarkeit		100%	100%	97%	97%		
Max.HMW				561	154		
Max.01-M					145		
Max.3-MW					137		
Max.08-M							
Max.8-MW							
Max.TMW		163		251	91		
97,5% Perz.							
MMW		41		110	59		
Gl.JMW							


Messstelle: HALL IN TIROL / Sportplatz


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		4		0		
IG-L: Zielwerte menschliche Gesundheit		4		5		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				5		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

	SC)2	PM10 kont.	PM10 grav.	NO	_	NO2		03			со				
	μg	/m3	μg/m ³	grav. μg/m³	μg/m³	_	$\mu g/m^3$				$\mu g/m^3$				mg/m³	_
	με	max	με/ΙΙΙ	μς/111	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				83	208	67	110	120								
02.				26	434	92	153	157								
03.				33	610	95	146	154								
04.				35	439	76	123	134								
05.				47	581	86	127	129								
06.				32	222	64	103	111								
So 07.				35	294	59	96	105								
08.				38	678	64	112	113								
09.				33	566	78	124	130								
10.				32	637	57	101	104								
11.				24	402	45	67	85								
12.				27	395	81	125	136								
13.				29	746	78	134	138								
So 14.				29	290	58	92	94								
15.				37	845	76	149	156								
16.				52	782	94	144	159								
17.				52	629	85	138	152								
18.				36	551	81	127	134								
19.				21	379	73	112	115								
20.				29	582	69	122	141								
So 21.				23	211	48	70	86								
22.				35	621	69	119	120								
23.				18	368	64	112	117								
24.				22	380	57	97	102								
25.				34	376	66	95	97								
26.				41	466	74	115	118								
27.				32	365	86	138	141								
So 28.				21	178	63	106	107								
29.				31	832	86	115	125								
30.				34	498	79	135	141								
31.				44	843	98	144	152								

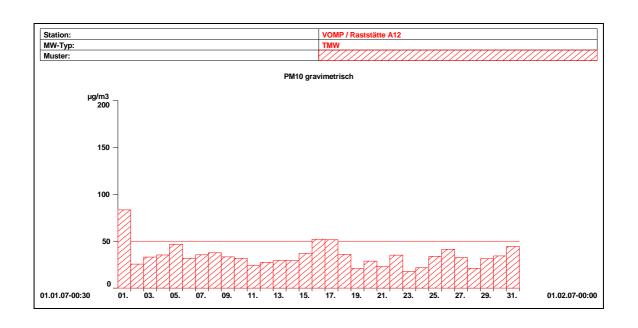
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				845	159		
Max.01-M					153		
Max.3-MW					141		
Max.08-M							
Max.8-MW							
Max.TMW			83	310	98		
97,5% Perz.							
MMW			34	194	73		
Gl.JMW					71		

0

Zeitraum: JÄNNER 2007

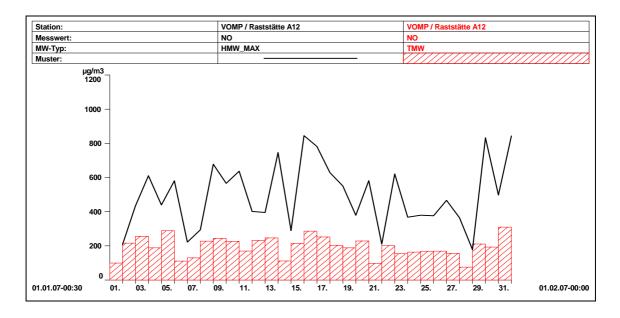
Messstelle: VOMP / Raststätte A12

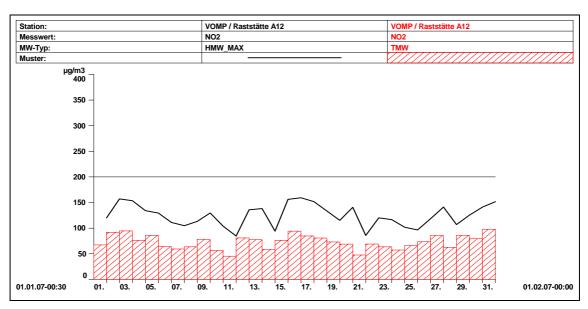
Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		3		0		
IG-L: Zielwerte menschliche Gesundheit		3		10		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle OZONGESETZ: Informationsschwelle						
OZONGESETZ: Informationsschwene OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				10		

VDI-RL 2310: NO-Grenzwert

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


ÖAW: Richtwerte Mensch, Vegetation (nur NO2)
ÖAW: SO2-Kriterium für Siedlungsgebiete

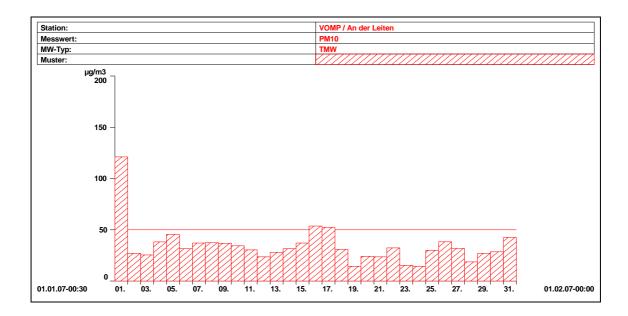

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

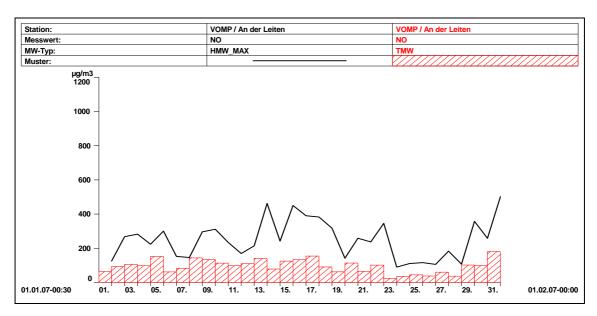
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

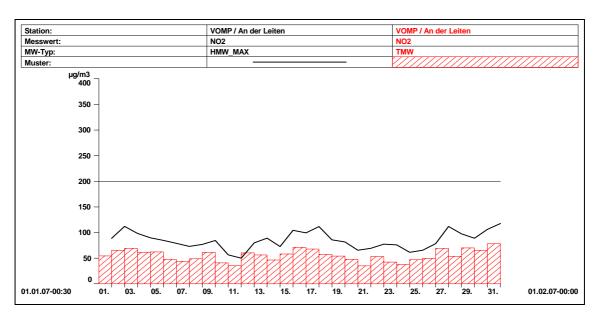
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: VOMP / An der Leiten

	SO)2	PM10	PM10	NO		NO2			03			СО			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			121		125	54	82	89								
02.			27		268	65	102	112								
03.			25		282	69	97	98								
04.			38		223	61	86	90								
05.			45		300	62	81	85								
06.			32		152	47	76	79								
So 07.			37		146	44	67	73								
08.			37		296	49	74	77								
09.			37		311	61	79	85								
10.			34		234	41	55	56								
11.			30		169	35	47	50								
12.			24		214	60	78	80								
13.			28		463	56	82	89								
So 14.			32		242	46	72	73								
15.			37		450	58	98	104								
16.			54		391	71	95	99								
17.			52		383	68	102	112								
18.			31		318	58	83	86								
19.			14		142	54	75	82								
20.			24		258	48	63	65								
So 21.			24		237	35	61	69								
22.			32		346	53	70	77								
23.			15		90	42	68	76								
24.			14		111	37	60	61								
25.			30		116	47	64	65								
26.			38		106	50	75	78								
27.			32		183	69	110	112								
So 28.			19		107	53	91	97								
29.			27		358	70	80	89								
30.			29		258	65	106	106								
31.			42		502	78	116	118								


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				502	118		
Max.01-M					116		
Max.3-MW					114		
Max.08-M							
Max.8-MW							
Max.TMW		121		180	78		
97,5% Perz.							
MMW		34		94	55		
Gl.JMW					48		


Messstelle: VOMP / An der Leiten


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		3		0		
IG-L: Zielwerte menschliche Gesundheit		3		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

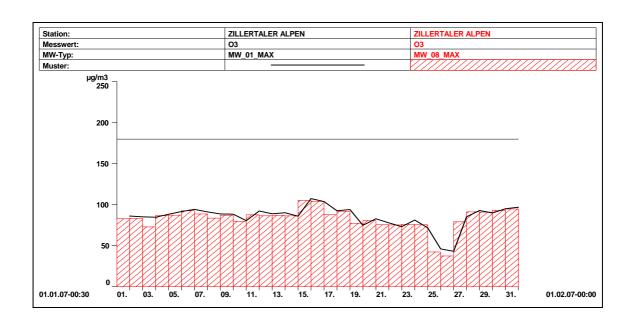
Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN

	SO)2	PM10	PM10	NO		NO2		О3						CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu \text{g}/\text{m}^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									86	86	86	86	86			
02.									83	83	85	85	86			
03.									73	73	85	85	85			
04.									87	86	88	88	89			
05.									87	88	92	92	92			
06.									93	93	94	94	94			
So 07.									89	89	91	91	92			
08.									84	84	89	89	89			
09.									87	87	88	88	89			
10.									80	80	81	81	81			
11.									88	88	92	92	93			
12.									87	87	89	89	89			
13.									87	87	90	90	91			
So 14.									86	87	86	87	88			
15.									105	105	107	107	108			
16.									104	104	104	104	104			
17.									88	88	93	93	93			
18.									92	92	94	94	94			
19.									77	77	75	75	75			
20.									81	81	83	83	83			
So 21.									76	76	78	78	78			
22.									75	76	73	75	75			
23.									76	76	81	81	82			
24.									76	76	72	74	76			
25.									42	42	46	46	47			
26.									38	38	43	43	59			
27.									79	79	85	86	86			
So 28.									91	91	93	93	94			
29.									91	91	90	92	93			
30.									93	93	95	95	96			
31.									95	95	97	97	97			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						108	
Max.01-M						107	
Max.3-MW							
Max.08-M						105	
Max.8-MW						105	
Max.TMW						102	
97,5% Perz.							
MMW						76	
Gl.JMW							


Messstelle: ZILLERTALER ALPEN

	0	
	0	
	0	
		0

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					2						
ÖAW: SO2-Kriterium für Siedlungsgebiete											
VDI-RL 2310: NO-Grenzwert											

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

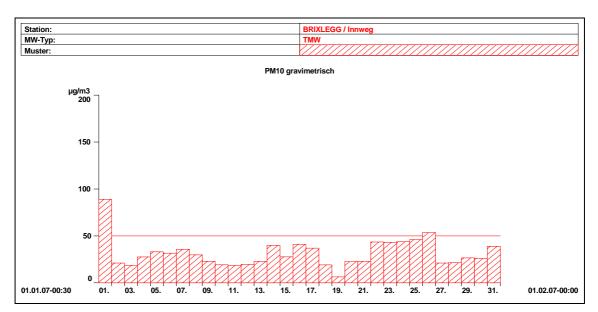
Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO	NO2			03					СО			
	μg	/m3	kont. μg/m³	grav. μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³		
	μg	max	μg/III	μg/III	max		max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
01.	4	15		89													
02.	2	4		21													
03.	2	5		18													
04.	3	5		28													
05.	4	5		33													
06.	3	5		32													
So 07.	4	7		36													
08.	4	9		30													
09.	3	5		23													
10.	3	5		19													
11.	3	10		18													
12.	3	10		19													
13.	4	9		23													
So 14.	4	10		40													
15.	3	6		28													
16.	5	15		41													
17.	4	6		37													
18.	2	5		19													
19.	1	2		6													
20.	2	4		22													
So 21.	4	46		23													
22.	9	42		43													
23.	18	77		43													
24.	25	131		44													
25.	11	56		46													
26.	6	33		53													
27.	2	4		21													
So 28.	2	4		21													
29.	4	10		27													
30.	4	7		26													
31.	5	8		39													

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	131						
Max.01-M							
Max.3-MW	69						
Max.08-M							
Max.8-MW							
Max.TMW	25		89				
97,5% Perz.	24						
MMW	5		31				
Gl.JMW							

Messstelle: BRIXLEGG / Innweg

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0					
IG-L: Grenzwerte menschliche Gesundheit	0	2				
IG-L: Zielwerte menschliche Gesundheit		2				
IG-L: Zielwerte Ökosysteme, Vegetation	0					
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					

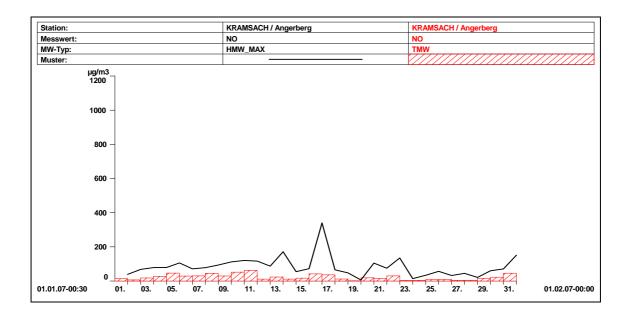
VDI-RL 2310: NO-Grenzwert

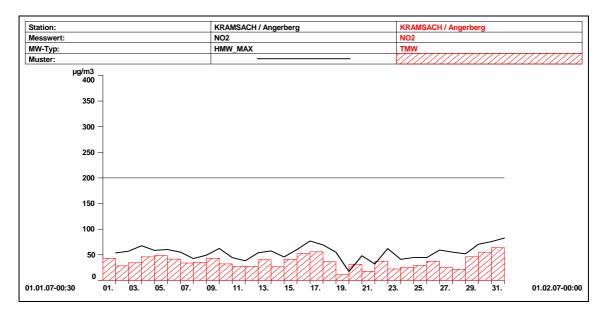
Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

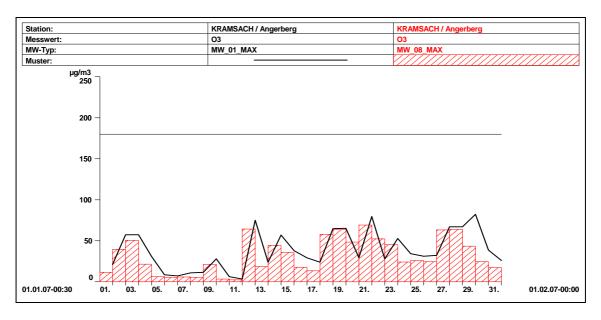
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

	SC)2	PM10	PM10	NO		NO2			_	03				СО	-
			kont.	grav.		-										
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$			1	$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					39	43	52	54	12	12	21	21	26			
02.					68	28	51	57	39	39	57	57	59			
03.					79	34	66	68	50	51	57	58	58			
04.					79	46	58	59	22	22	31	31	35			
05.					106	49	57	60	6	6	9	10	12			
06.					71	42	54	55	5	5	7	7	8			
So 07.					78	34	42	43	6	6	11	11	11			
08.					94	35	48	49	6	6	12	12	14			
09.					112	43	59	62	21	21	28	31	32			
10.					121	32	41	45	3	3	6	6	7			
11.					117	27	37	38	2	2	3	3	3			
12.					87	28	52	54	64	64	75	75	75			
13.					171	40	51	57	19	19	24	25	28			
So 14.					55	27	44	46	44	44	57	60	61			
15.					72	41	60	60	36	37	38	39	40			
16.					340	52	74	77	18	17	29	29	31			
17.					66	56	67	69	13	13	24	25	26			
18.					48	36	54	55	58	58	65	66	66			
19.					6	11	16	17	63	64	65	65	66			
20.					105	31	44	48	48	49	29	31	33			
So 21.					75	17	31	32	69	70	80	80	80			
22.					135	37	59	62	52	54	28	32	33			
23.					14	22	40	41	45	45	53	54	54			
24.					34	25	43	45	24	24	34	34	36			
25.					57	29	42	45	26	26	31	31	33			
26.					32	37	58	59	24	24	32	33	34			
27.					45	25	48	55	63	63	67	67	69			
So 28.					21	22	45	52	64	64	67	67	68			
29.					60	46	66	71	43	43	82	82	83			
30.					71	55	72	76	25	25	39	40	42			
31.					152	64	82	83	17	17	26	26	27			


	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				340	83	83	
Max.01-M					82	82	
Max.3-MW					79		
Max.08-M						69	
Max.8-MW						70	
Max.TMW				62	64	53	
97,5% Perz.	•						
MMW	•			22	36	17	
Gl.JMW					26		


Messstelle: KRAMSACH / Angerberg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO							
Gesetzliche Alarm-, Grenz- und Zielwerte													
IG-L: Warnwerte				0									
IG-L: Grenzwerte menschliche Gesundheit				0									
IG-L: Zielwerte menschliche Gesundheit				0									
IG-L: Zielwerte Ökosysteme, Vegetation				0									
OZONGESETZ: Alarmschwelle					0								
OZONGESETZ: Informationsschwelle					0								
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0								
2. VO gegen forstschädliche Luftverunreinigungen													
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				11	5								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	0								
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert			0										

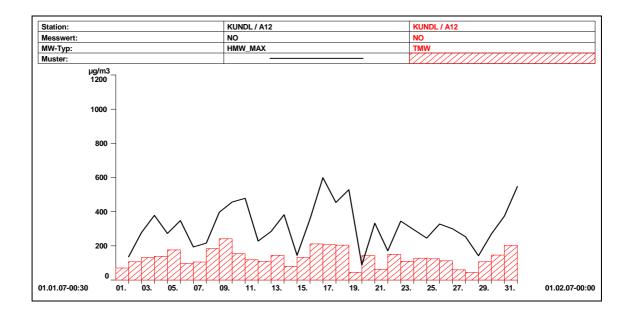
Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

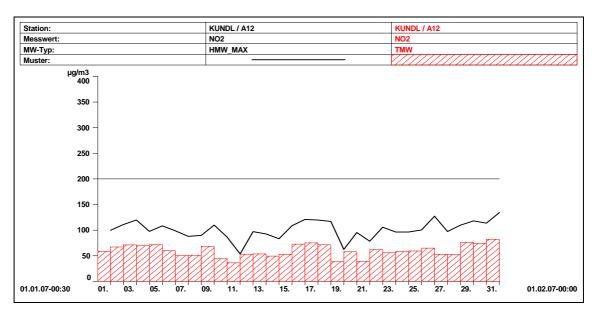
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: JÄNNER 2007 Messstelle: KUNDL / A12

	SC	02	PM10 kont.	PM10	NO	_	NO2		_		03	_		_	со	_
	μg	/m3	μg/m³	grav. μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
	μg/	max	μg/III	μg/III			max	max	max	max	max	max	en o v	max	max	max
Tag	TMW	HMW	TMW	TMW	max HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	max HMW	8-MW	01-M	HMW
01.					136	59	96	100								
02.					278	67	109	111								
03.					379	71	110	120								
04.					273	70	92	98								
05.					348	72	101	108								
06.					194	60	88	99								
So 07.					216	50	84	88								
08.					397	51	82	90								
09.					457	68	104	110								
10.					478	44	82	86								
11.					228	36	48	54								
12.					285	53	95	97								
13.					382	54	92	93								
So 14.					145	49	81	83								
15.					358	53	105	109								
16.					599	73	116	121								
17.					454	75	111	120								
18.					529	71	116	117								
19.					88	39	61	62								
20.					333	58	92	95								
So 21.					171	39	74	78								
22.					345	62	90	106								
23.					295	56	95	96								
24.					245	58	88	96								
25.					328	59	96	100								
26.					300	65	121	127								
27.					254	53	95	97								
So 28.					142	52	105	110								
29.					271	76	117	118								
30.					374	74	111	114								
31.					547	82	127	134								

	SO2	PM10	PM10	NO	NO2	03	СО
	μg/m³	kont. μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	1.0	110	1.0	31	31	1.6	
Verfügbarkeit				98%	98%		
Max.HMW				599	134		
Max.01-M					127		
Max.3-MW					123		
Max.08-M							
Max.8-MW							
Max.TMW				241	82		
97,5% Perz.							
MMW				130	60		
Gl.JMW							


JÄNNER 2007 Zeitraum: Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				1		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

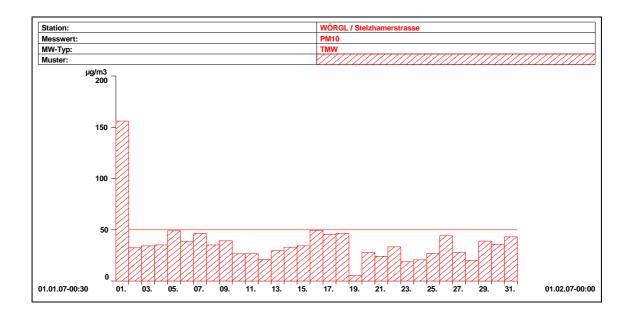
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

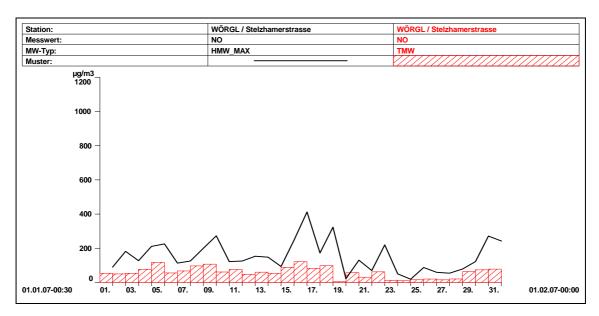
¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

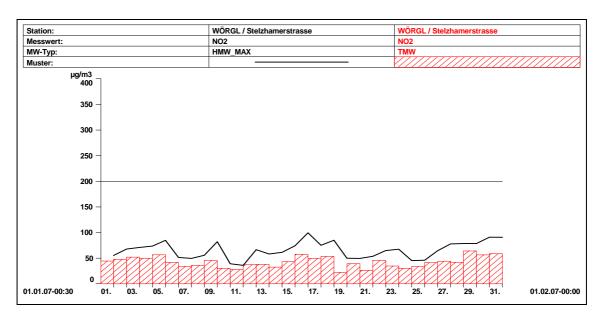
Messstelle: WÖRGL / Stelzhamerstrasse

	SO)2	PM10	PM10	NO		NO2			_	03		_		со	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$	T			μg/m³	1	1		mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			156		90	44	54	55								
02.			32		182	47	65	68								
03.			34		127	52	71	71								
04.			35		211	50	70	74								
05.			49		225	57	77	85								
06.			39		113	42	50	51								
So 07.			46		125	34	49	50								
08.			35		200	36	55	56								
09.			39		273	45	72	82								
10.			27		122	30	37	39								
11.			27		125	28	35	36								
12.			21		153	37	60	67								
13.			30		148	38	55	58								
So 14.			33		93	33	58	61								
15.			34		248	43	71	74								
16.			50		412	58	97	99								
17.			45		172	49	72	75								
18.			47		324	54	78	85								
19.			5		22	22	43	50								
20.			28		131	39	49	50								
So 21.			24		70	26	51	54								
22.			33		220	45	63	65								
23.			19		50	35	66	67								
24.			21		19	30	44	45								
25.			27		87	34	44	46								
26.			44		59	41	61	64								
27.			28		54	44	74	78								
So 28.			20		78	42	72	79								
29.			39		122	64	76	79								
30.			36		271	56	86	91								
31.			43		243	59	90	91								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				412	99		
Max.01-M					97		
Max.3-MW					92		
Max.08-M							
Max.8-MW							
Max.TMW		156		121	64		
97,5% Perz.							
MMW		37		59	42		
Gl.JMW					33		


Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO						
Gesetzliche Alarm-, Grenz- und Zielwerte												
IG-L: Warnwerte				0								
IG-L: Grenzwerte menschliche Gesundheit		1		0								
IG-L: Zielwerte menschliche Gesundheit		1		0								
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.								
OZONGESETZ: Alarmschwelle												
OZONGESETZ: Informationsschwelle												
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen												
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				18								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KUFSTEIN / Praxmarerstrasse

	SO)2	PM10	PM10	NO		NO2		_	_	03	_			СО	
	110	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
	MB/	max	м _В , ш	μ ₈ / III	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	4	8	92		74	43	58	59								
02.	3	6	21		170	48	81	84								
03.	3	6	19		138	52	71	75								
04.	3	6	20		107	42	61	63								
05.	4	6	30		157	54	71	72								
06.	3	5	27		90	42	52	53								
So 07.	4	6	31		119	33	44	46								
08.	3	5	21		128	32	46	47								
09.	3	5	20		98	40	55	58								
10.	2	4	18		119	30	38	38								
11.	2	3	19		128	28	34	37								
12.	3	7	16		91	33	58	64								
13.	3	6	21		143	38	48	54								
So 14.	4	7	18		65	29	45	45								
15.	3	5	21		85	37	60	62								
16.	5	9	34		169	48	58	61								
17.	6	9	42		175	50	60	65								
18.	3	8	32		135	45	67	71								
19.	1	3	4		55	19	48	57								
20.	3	7	23		105	38	51	51								
So 21.	2	5	16		50	23	47	48								
22.	4	8	25		184	41	60	61								
23.	1	3	10		20	25	42	49								
24.	3	6	10		12	22	32	36								
25.	4	7	22		39	31	43	44								
26.	5	8	32		33	41	57	57								
27.	3	7	15		142	46	69	69								
So 28.	3	7	10		129	33	58	68								
29.	5	8	28		127	65	83	85								
30.	5	8	28		196	57	76	77								
31.	4	8	33		145	53	68	73								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	9			196	85		
Max.01-M					83		
Max.3-MW	8				79		
Max.08-M							
Max.8-MW							
Max.TMW	6	92		79	65		
97,5% Perz.	7						
MMW	3	24		41	39		
Gl.JMW					32		

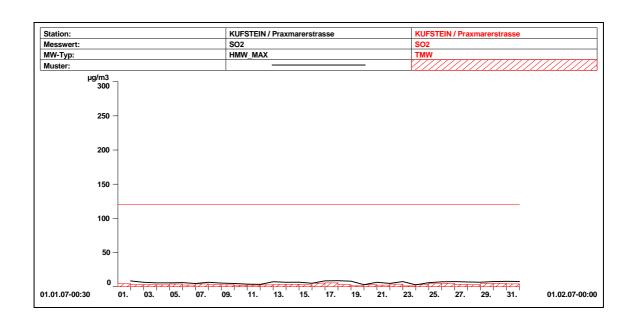
Ü1

0

Zeitraum: JÄNNER 2007

Messstelle: KUFSTEIN / Praxmarerstrasse

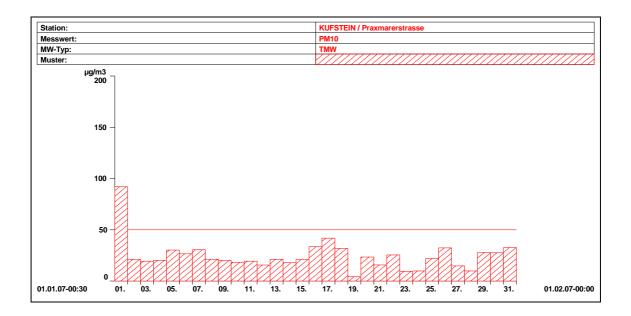
Anzahl der Tage mit Grenzwertüberschreitungen

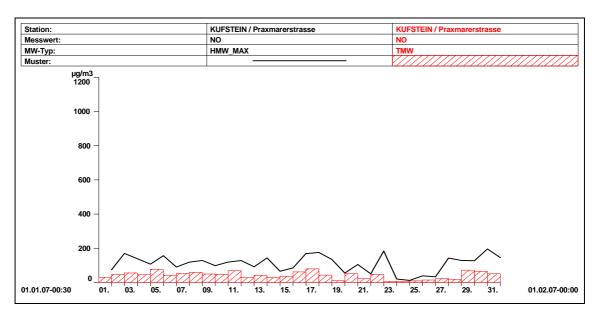

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				15		

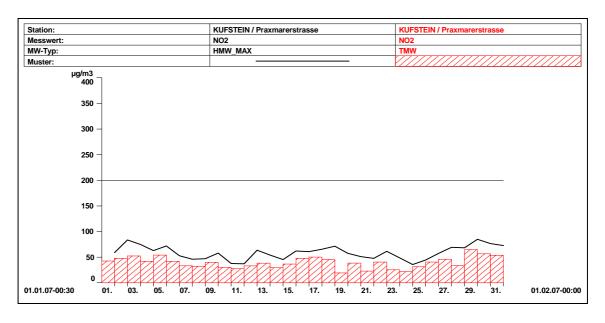
ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert

ÖAW: Richtwerte Mensch, Vegetation (nur NO2)


0

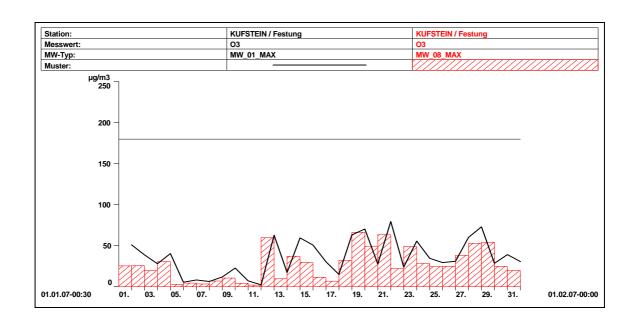



Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KUFSTEIN / Festung


	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg/	m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									25	25	51	56	58			
02.									26	24	39	39	48			
03.									20	20	28	29	29			
04.									31	31	40	40	41			
05.									3	3	5	5	8			
06.									4	4	8	8	9			
So 07.									3	3	6	6	7			
08.									7	7	12	13	15			
09.									11	11	23	23	23			
10.									4	4	7	8	8			
11.									2	2	2	2	2			
12.									60	60	63	63	66			
13.									10	10	17	17	18			
So 14.									37	37	60	60	60			
15.									30	30	51	51	52			
16.									11	11	31	31	36			
17.									7	7	15	15	15			
18.									32	34	63	63	63			
19.									66	66	70	71	71			
20.									49	51	28	33	31			
So 21.									63	63	80	80	80			
22.									22	26	24	24	26			
23.									49	48	56	56	56			
24.									28	28	35	35	35			
25.									25	25	29	30	31			
26.									25	25	31	34	35			
27.									38	39	60	60	62			
So 28.									53	53	73	73	73			
29.									54	53	29	29	30			
30.									25	25	39	39	40			
31.									20	20	31	32	34			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						80	
Max.01-M						80	
Max.3-MW							
Max.08-M						66	
Max.8-MW						66	
Max.TMW						55	
97,5% Perz.							
MMW						14	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
					0	
OZONGESETZ: Informationsschwelle OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					2	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

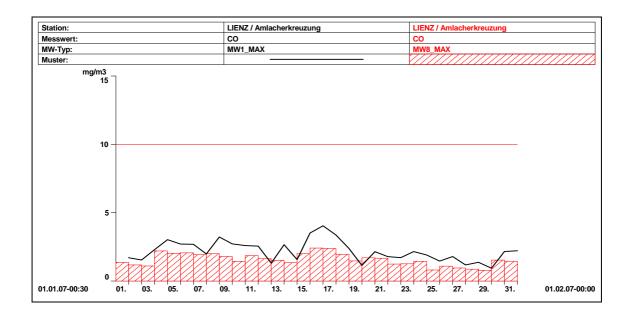
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

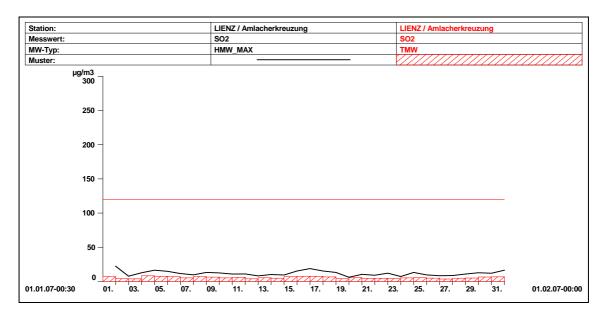
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

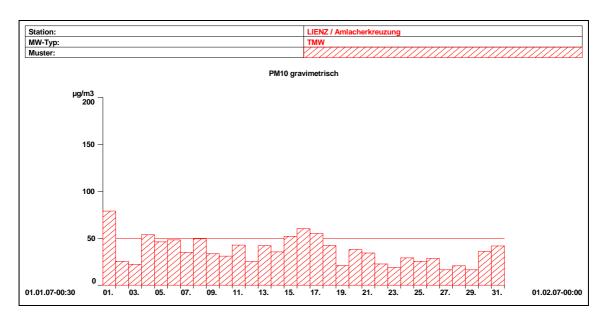
Messstelle: LIENZ / Amlacherkreuzung

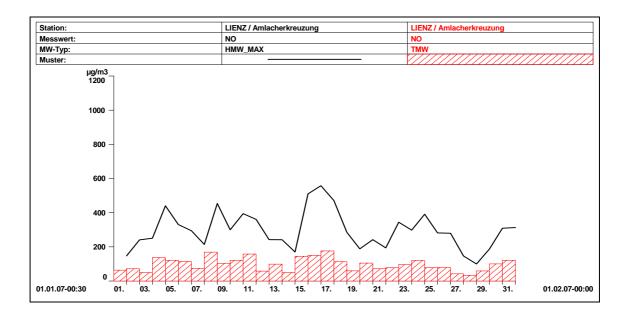
	SC)2	PM10	PM10	NO		NO2			_	03		_		СО	_
			kont.	grav.												_
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	ı			μg/m³	1			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	7	22		79	147	47	81	86						1.4	1.7	1.7
02.	4	8		25	241	42	85	100						1.2	1.5	1.7
03.	4	13		22	251	36	109	117						1.1	2.3	2.7
04.	8	16		54	440	72	144	157						2.2	3.0	3.0
05.	8	15		46	331	68	121	127						2.0	2.5	3.1
06.	7	12		48	295	68	122	135						2.1	2.7	3.3
So 07.	5	10		35	214	46	88	95						1.9	2.0	2.1
08.	7	13		49	454	68	115	134						2.0	2.9	4.0
09.	6	12		34	300	51	105	113						1.8	2.4	2.8
10.	5	11		31	394	39	83	89						1.4	2.6	2.9
11.	6	11		43	361	51	103	111						1.9	2.5	2.7
12.	4	8		25	242	44	75	83						1.6	1.2	1.7
13.	5	10		42	242	59	110	111						1.5	2.7	3.0
So 14.	5	9		36	170	44	96	115						1.3	1.4	1.6
15.	7	15		52	510	75	149	174						2.0	3.1	3.6
16.	7	19		60	558	71	159	169						2.4	4.0	4.3
17.	7	15		55	471	75	126	135						2.4	3.4	3.4
18.	7	13		43	285	63	97	100						2.0	2.4	2.4
19.	4	6		21	188	36	60	75						1.5	1.1	1.2
20.	6	10		38	242	50	82	91						1.7	2.2	2.4
So 21.	5	9		34	194	40	80	82						1.7	1.8	1.9
22.	5	12		23	345	45	69	93						1.2	1.4	1.8
23.	4	7		19	298	56	93	94						1.3	2.1	2.8
24.	5	13		29	391	58	116	131						1.4	1.9	2.1
25.	5	10		25	282	47	91	102						0.8	1.5	1.6
26.	5	8		28	280	49	97	117						1.1	1.5	2.1
27.	4	9		16	147	36	69	90						1.0	1.1	1.3
So 28.	5	11		21	100	41	85	90						0.9	1.3	1.5
29.	5	13		16	188	54	116	120						0.8	0.9	1.1
30.	7	12		36	309	75	137	144						1.5	2.2	2.4
31.	7	16		42	313	80	125	130						1.5	1.8	2.5

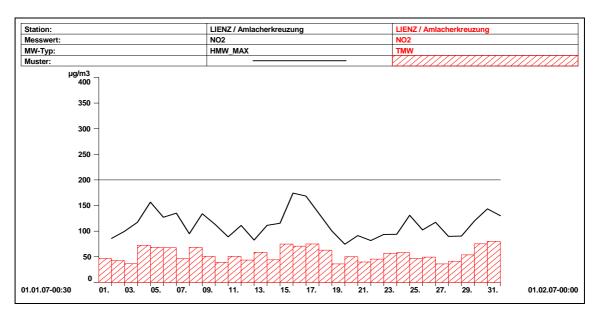
	SO2	PM10 kont.	PM10 grav.	NO	NO2	O3	CO
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31		31	31	31		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	22			558	174		
Max.01-M					159		4.0
Max.3-MW	15				139		
Max.08-M							
Max.8-MW							2.4
Max.TMW	8		79	176	80		
97,5% Perz.	13						
MMW	6	-	36	97	54	, in the second	0.9
Gl.JMW					41		


Messstelle: LIENZ / Amlacherkreuzung

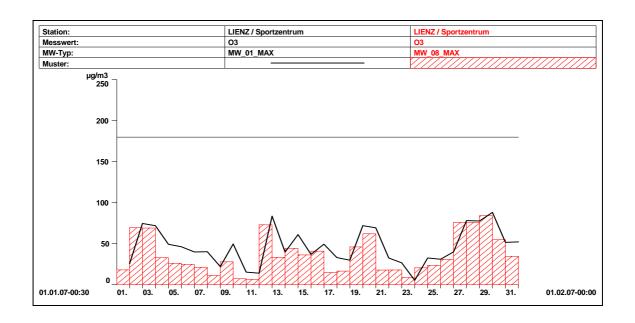

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	5		0		0
IG-L: Zielwerte menschliche Gesundheit		5		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad LIENZ \, / \, Sportzentrum$


	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									18	18	26	35	41			
02.									70	70	75	75	75			
03.									69	69	72	73	73			
04.									33	32	49	49	51			
05.									26	26	46	48	49			
06.									25	25	40	42	44			
So 07.									21	21	40	42	43			
08.									11	11	22	23	24			
09.									28	28	50	53	55			
10.									7	7	15	16	16			
11.									7	7	14	14	14			
12.									73	73	84	85	86			
13.									33	37	40	40	43			
So 14.									44	44	61	65	66			
15.									36	38	37	39	41			
16.									41	40	49	50	50			
17.									15	16	33	35	36			
18.									17	17	30	30	31			
19.									46	48	72	72	73			
20.									62	63	69	73	72			
So 21.									18	18	33	33	35			
22.									18	18	27	27	28			
23.									9	9	5	5	6			
24.									21	21	33	33	33			
25.									24	24	31	33	33			
26.									31	31	40	40	41			
27.									76	76	78	78	79			
So 28.									76	76	78	78	78			
29.									84	84	88	88	88			
30.									55	56	52	54	56			
31.									35	35	52	52	59			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						88	
Max.01-M						88	
Max.3-MW							
Max.08-M						84	
Max.8-MW						84	
Max.TMW						61	
97,5% Perz.							
MMW						19	
Gl.JMW							

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					7	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)									
	April - Oktober	November - März							
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³							
(HMW) in den Monaten									
Die zulässige Überschreitung des Grenzwertes	s, die sich aus der Perzentilregelung ergibt, da	urf höchstens 100% des Grenzwertes betragen.							
Tagesmittelwert (TMW)	0.05 mg/m^3	$0.10~\mathrm{mg/m^3}$							
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³							

II. Warnwerte für Ozon laut Ozongesetz 1992: (BGBl. I Nr. 34/2003 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)		
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)		
Zielwert	120 µg/m³ als Achtstundenmittelwert *)		
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.			

III. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Stickstof	fdioxid ((NO ₂)	August 1989: Luftqualitätskriterien Ozon (O ₃))	
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in mg/m^3		Wirkungsbezogene Immissionsgrenzkonzentrationen für O_3 in $\mathrm{mg/m^3}$			en			
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode								

Die höchstzulässige Konzentration von Schwefeldioxid (SO ₂) in der freien Luft beträgt			
	in Erholungsgebieten		in allgemeinen Siedlungsgebieten
		Schwefeldioxi	d in mg/m³ Luft
	April - Oktober	November – März	
Tagesmittelwert	0,05	0,10	0,20
Halbstundenmittelwert	0,07	0,15	0,20
			Die Überschreitung dieses Halbstundenmittelwertes
			dreimal pro Tag bis höchstens 0,50 mg/m³ gilt
			nicht als Luftbeeinträchtigung.

V. Immissionsschutzgesetz-Luft (BGBl. I Nr. 62/2001 i.d.g.F.)

a) Schutz der menschlichen Gesundheit (BGBl. I Nr. 34/2003 i.d.g.F.)

G	Grenzwerte in μg/m³ (aus	genommen CO: ange	egeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **)
PM_{10}				50 ***)	40
	War	nwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Zie	lwerte in μg/m³			
Stickstoffdioxid				80	
PM_{10}				50	20

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³						
Luftschadstoff	HMW	MW3	MW8	TMW	JMW	
Schwefeldioxid					201)	
Stickstoffoxide					30	
	Zielwerte in μg/m³					
Schwefeldioxid				50		
Stickstoffdioxid				80		
¹) für das Kalenderjahr und Winterhalbjahr (1.	Oktober bis 31.März	:)			•	

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)			
Tagesmittelwert	500 μg/m³		
Halbstundenmittelwert	$1000~\mu\mathrm{g/m^3}$		

^{**)} Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum WERT[μ9	g/m3]	
HEITERWANG Ort / B179 Anzahl: 1	16.01.2007	51	
VOMP / An der Leiten VOMP / An der Leiten VOMP / An der Leiten Anzahl: 3	01.01.2007 16.01.2007 17.01.2007	121 54 52	
WÖRGL / Stelzhamerstrasse Anzahl: 1	01.01.2007	156	
KUFSTEIN / Praxmarerstrasse Anzahl: 1	01.01.2007	92	

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum	WERT[µg/m	n3]	
<pre>IMST / Imsterau IMST / Imsterau Anzahl: 2</pre>				
INNSBRUCK / Andechsstrasse		.2007	131	
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse		.2007		
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse		.2007		
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse	13.01	.2007	63	
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse	16.01	.2007	87	
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse	20.01	.2007	61	
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse	26.01	.2007	51	
INNSBRUCK / Andechsstrasse			_	
INNSBRUCK / Andechsstrasse				
INNSBRUCK / Andechsstrasse	31.01	.2007	73	
Anzahl: 17				
INNSBRUCK / Fallmerayerstr.				
INNSBRUCK / Fallmerayerstr.	05.01	.2007	52	
INNSBRUCK / Fallmerayerstr.				
INNSBRUCK / Fallmerayerstr. Anzahl: 4	31.01	.2007	57	

HALL IN TIROL / Sportplatz HALL IN TIROL / Sportplatz HALL IN TIROL / Sportplatz Anzahl: 3	01.01.2007 16.01.2007 17.01.2007	112 59 59
VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 Anzahl: 3	01.01.2007 16.01.2007 17.01.2007	83 52 52
BRIXLEGG / Innweg BRIXLEGG / Innweg Anzahl: 2	01.01.2007 26.01.2007	89 53
LIENZ / Amlacherkreuzung Anzahl: 5	01.01.2007 04.01.2007 15.01.2007 16.01.2007 17.01.2007	79 54 52 60 55

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00
Halbstundenmittelwert > 200µg/m3

 ${\tt MESSSTELLE} \qquad {\tt Datum} \qquad {\tt WERT[\mu g/m3]}$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Dreistundenmittelwert > $400 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Tagesmittelwert > $80\mu g/m3$

MESSSTELLE	Datum WERT[µg	g/m3]
IMST / Imsterau IMST / Imsterau Anzahl: 2	15.01.2007 16.01.2007	84 105
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse Anzahl: 2	16.01.2007 31.01.2007	92 83
<pre>INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. Anzahl: 2</pre>	29.01.2007 31.01.2007	82 84
HALL IN TIROL / Sportplatz Anzahl: 5	16.01.2007 17.01.2007 29.01.2007 30.01.2007 31.01.2007	91 89 85 84 89

VOMP / Raststätte A	A12	02.01.2007	92
VOMP / Raststätte A	A12	03.01.2007	95
VOMP / Raststätte A	A12	05.01.2007	86
VOMP / Raststätte A	A12	12.01.2007	81
VOMP / Raststätte A	A12	16.01.2007	94
VOMP / Raststätte A	A12	17.01.2007	85
VOMP / Raststätte A	A12	18.01.2007	81
VOMP / Raststätte A	A12	27.01.2007	86
VOMP / Raststätte A	A12	29.01.2007	86
VOMP / Raststätte A	A12	31.01.2007	98
Anzahl: 10			
KUNDL / A12		31.01.2007	82
Anzahl: 1			

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Dreistundenmittelwert > $500 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00

Tagesmittelwert > 50μg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Tagesmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00 Achtstundenmittelwert > 10 mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der IG-L Alarmschwelle im Zeitraum 01.01.07-00:30 - 01.02.07-00:00

Einstundenmittelwert > $240\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der IG-L Informationsschwelle im Zeitraum 01.01.07-00:30 - 01.02.07-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.01.07-00:30 - 01.02.07-00:00
Achtstundenmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!